By Mikael Johansson,
http://www.linkedin.com/in/mjohansson1l
2012-09-08

Network based smoke alarm -
using Arduino and iPhone

Internet

Arduino

Development
Environment

10of12

By Mikael Johansson,
http://www.linkedin.com/in/mjohansson1
2012-09-08

Introduction

How cool would it not be to check the status of your smoke alarm through an
mobile app over Internet?! | would say very cool and totally necessary! So in this
document [will describe the technical solution of my network based smoke
alarm.

The technical solution is rather simple. When smoke hits the smoke alarm
(detector), the smoke alarm will send out voltage to its buzzer. That voltage will
be read by an analog input pin on the Arduino. The Arduino will post the value to
a web server (running PHP/MySQL). In the other end of the system, an iPhone
app will continuously read the values and notify the user if a high voltage value is
found.

20f12

By Mikael Johansson,
http://www.linkedin.com/in/mjohansson1

2012-09-08
Table of contents

INTRODUCTION 2
TABLE OF CONTENTS 3
PREREQUISITES 4
CREDITS 4
EQUIPMENT 4
SYSTEM OVERVIEW 5
BREADBOARD VIEW 5
BUILD INSTRUCTIONS 6
SETUP THE HARDWARE 6
SETUP THE SOFTWARE 6
MODIFY THE SMOKE ALARM 7
CONNECT THE SMOKE ALARM TO THE ARDUINO THROUGH A COUPLING PLATE 7
TEST THE MODIFIED SMOKE ALARM 7
MODIFY THE ANALOGREADSERIAL 8
DEVELOP THE WEB SITE 9
DEVELOP AN APP 9
POSSIBLE IMPROVEMENTS 11
REFERENCES 11

30f12

By Mikael Johansson,
http://www.linkedin.com/in/mjohansson1
2012-09-08

Prerequisites

All build steps are not described in detail (some are just mentioned breifly). So
this document requires that the reader have a basic knowledge of electronics
and software development. Don’t forget to ask www.google.com when you need
help.

Credits

Thanks to my employer HiQ [5] that gave me time to finalize this project and also
thanks to Jakob Selbing who supported with electric skills.

Equipment

All the equipment [used in this experiment is listed below. Some parts can be
changed to similar solutions. E.g. if you don’t have a Mac, you can use a PC and
create an Android app instead.

1. Arduino Mega 2560 rev3,
http://www.Kkjell.com/sortiment/el/elektronik/mikrokontroller/arduino
/arduino-mega-2560-rev3-p87861

2. Arduino Ethernet Shield rev3,
http://www.Kkjell.com/sortiment/el/elektronik/mikrokontroller/arduino
/arduino-ethernet-shield-rev3-p87864

3. Coupling plate,
http://www.Kkjell.com/sortiment/el/elektronik/elektroniklab /kopplings
platta-lodfri-p36251

4. Cables for coupling plate,

http://www.Kkjell.com/sortiment/el/elektronik/elektroniklab /bygelsladd

ar-140st-p36254

Thin wires that can be used for soldering

6. Housegard HG-102 smoke alarm,
http://www.teknikmagasinet.se/db.pl?tf=product_link.html&link=&artnr
=570477&title=Brandvarnare%20optisk&

7. Computer with Arduino development environment,
http://arduino.cc/en/Main/Software

8. Computer with Apple Xcode development environment (in my case
MacBook Air), http://www.apple.com/se/macbookair/specs.html

9. Two 5,6K ohm resistors, e.g.
http://www.clasohlson.com/se/Motst%C3%A5ndssats/Pr363840000

10. RJ-45 Ethernet cable

11. USB cable for Arduino programming (upload of application)

12. Soldering iron

13. Solder

14. Optional: multimeter

15. Web server with PHP & MySQL

v

40f12

By Mikael Johansson,
http://www.linkedin.com/in/mjohansson1
2012-09-08

System overview

The remote controlled smoke alarm system consists of four main parts,
microcontroller, smoke alarm, web server and an smoke alarm app (for iPhone).

PHP & MySQL '

Web server

2. Request
smoke alarm
status

3. Receive
smoke alarm
1. Upload status
smoke alarm
status

—_—

P
e /

Microcontroller Smoke alarm

Figure 1 - Overview of the remote controlled smoke alarm.

When smoke hits the detector in the smoke alarm, the IC circuit will send out
~10 volt on pin 7. The Arduino that is connected to the smoke alarm on pin 7
and its ground will detect that the voltage raises from 0 to 5 volt. Since the
Arduino only can handle 0-5 volts, two resistors on the coupling board will
reduce the voltage from 10 to 5 volt.

When the Arduino reads the voltage on the analog input pin 0, it will send the
value to the web server with a HTTP GET request message. The web server

running PHP receives the request message and stores the information in a
MySQL database.

The phone with the smoke alarm app continuously polls the web server for the
smoke alarm status, if it receives a status value that indicate smoke (>0 volt) it
will notify the user.

Breadboard view

50f12

By Mikael Johansson,
http://www.linkedin.com/in/mjohansson1

2012-09-08

The ground (GND) and analog input 0 (AO) pin is used on the Arduino. On the
smoke alarm the IC (BL59S10) /0O pin (number 7) and ground is used.

PWR om

ISP

Arduino MEGA

www-arduino.cc

—
W
7]
"]
o

m
MEVGNDVIN o arumawon

® o 0o 0 0
® o o 0 0
® o 0000 00

® o o000 0 0

le e o @
fe e o @

Build instructions

The instructions below should be read in chronological order.

Setup the hardware
Put the Arduino Ethernet Shield rev3 on top of the Arduino Mega 2560

rev3 (the two units is from now called "the Arduino”).

OO0 OOOOOOOO‘

OO0

OO0
OO0
OO0
OO0

OO0
OO0
OO0

Connect the Arduino with a R]J-45 Ethernet cable to Internet and a USB

cable to the computer.

Setup the software
Download and install the Arduino development environment from

http://arduino.cc/en/Main/Software.

Install Apache webserver with PHP, MySQL and phpMyAdmin or create

an account at a web hotel that provide such services.

Download and install Xcode. Xcode is free as long as you do not need to
run the app on real hardware. There is a very good inbuilt iPhone and
iPad simulator in Xcode that can be used for this purpose. Xcode can be

60f12

By Mikael Johansson,
http://www.linkedin.com/in/mjohansson1l
2012-09-08

downloaded for free from Mac OS X App Store (or
https://developer.apple.com/xcode/).

Modify the smoke alarm
* Open up the smoke alarm (HG-102) and take out the circuit board.
¢ Verify that the 9 volt battery is not connected to the circuit board.
* Solder a thin (red) wire on the dot in front of the IC’s pin 7 and a thin
(black) wire on the ground, see Figure 3 below.

Ground

Figure 3 - Modification of the smoke alarm circuit board.

* Do not connect the red wire on pin 7 directly to the Arduino since it has
almost 10 volt, which is more than the Arduino is made for. If you have a
multimeter you can now add the 9 volt battery and measure the voltage
on the newly soldered red and black wire when you press the test button.
It should be around 10 volt. When the test button is un-pressed the
multimeter should measure 0 volt.

Connect the smoke alarm to the Arduino through a coupling plate

* Connect the newly soldered ground (black) wire and pin 7 (red) wire to
the coupling plate as shown in Figure 2.

* Add two resistors at 5,6 K ohm as shown in the same figure. Since the
output voltage from the smoke alarm circuit is around 10 volt, it must be
reduced for the Arduino which only can handle 0-5 volt. This is made by
using a voltage divider (see [2] for more information).

* Connect the other wires as shown in the figure. The wires to the Arduino
are connected to the ground (GND) and analog input 0 (AO) pins.

Test the modified smoke alarm

* [tis now time to test the modifications.

* Open the Arduino development environment and from the File menu
select Examples > 01.Basics > AnalogReadBasics. This example is a good
starting point for this development since it continuously reads and
displays the voltage on analog input pin 0 (AO).

7 of 12

By Mikael Johansson,
http://www.linkedin.com/in/mjohansson1
2012-09-08
* Start and configure the Arduino development environment (see [3] for
more information).
* Go to menu Tools > Board and select Arduino Mega 2560 or Mega ADK
* Go to menu Tools > Serial Port and select something
like/dev/tty.usbmodem (can differ).
* Open an example program from menu File > Examples > 01.Basics >
AnalogReadSerial.
* Upload the code to the Arduino and show the Serial Monitor (menu Tools
> Serial Monitor).
* Press the test button on the smoke alarm circuit and verify that the
Arduino detects the voltage that should be around 4-5 volt.

Modify the AnalogReadSerial

* Save the AnalogReadSerial as something else (e.g. FireAlarmReporter).

* The FireAlarmReport needs to be modified to report the voltage to the
web server using the Ethernet library [4]. Sorry, but [will not go into
details here so you have to learn by your self how to use it.

* In this experiment, the FireAlarmReporter sends HTTP GET requests to
http://complexit.se/arduino/rval.php?sid=1&v=4, where rval.php is the
PHP file that will save the data to the MySQL server, sid is an own-defined
ID for this "fire alarm reporter unit” and v is the voltage value.

Code snippet that can be useful:

char url_host[] = "www.complexit.se";
EthernetClient client;

int sensor_id = 1;

int sensor_value = 0;

int reportSensorStatus() {
Serial.println("Reporting status...");
size_t printed = client.print("GET ");
client.print("/arduino/rval.php?");
client.print("sid=");
client.print(sensor_id);
client.print("&v=");
client.print(sensor_value);
client.println(" HTTP/1.0");
client.println("Host: www.complexit.se"); //Needed for shared hosts
client.println();
Serial.print("Sent ");
Serial.print(printed);
Serial.println(" bytes.");

}

The code snippet above can be used to report the value (sensor_value) to the
web server. Save the return value from analogRead(AO) into sensor_value
before invoking the reportSensorStatus method.

8o0f12

By Mikael Johansson,
http://www.linkedin.com/in/mjohansson1
2012-09-08

As you can see in the code | have added the comment ”//Needed for shared
hosts”. That line is required if your webserver’s ip number is shared with
other websites (common for web hotels). The line will tell the web server
which one its websites that want to receive the HTTP GET request method.

Develop the web site
Now when the Arduino can send the smoke alarm voltage values with HTTP GET

request messages, it is time to fetch those messages. That will be done with PHP
and MySQL.

[use three files on the webserver: rval.php (register values), gval.php (get
values) and cfg.php (webserver configuration). The cfg.php file is included
from the rval.php and gval.php files.

The following code is used for receiving the variables in the HTTP GET
request:

$sensor_id = $_GET['sid'];
$sensor_value = $_GET['v'];

The sensor_id and sensor_value is then saved into a table.

To create the table that will store the smoke alarm values, [recommend
phpMyAdmin (http://www.phpmyadmin.net/).

The gval.php is the file that the app will read, so it takes a sensor id as
input and returns the sensor’s value to the app. The data sent to the app is
in my solution in XML format. A code snippet from my gval.php is:

$sensor_id = $_GET['sid'];
echo get_response_message_xml(get_sensor_status($sensor_id));

The sensor id is saved to sensor_id in the same way as in rval.php. The
get_sensor_status is a method that looks into the database for the latest
voltage value for the given sensor_id. The get_response_message_xml is a
method that presents a given input value in a XML format. That XML
format is also known by the app.

Develop an app

Since [have a Mac and an iPhone, the decision of making an iPhone app for this
experiment wasn'’t so difficult. If you have a Mac but no iPhone you can test your
app in the iPhone/iPad simulator. If you don’t have a Mac, this can be done in
Eclipse by using the Android SDK [6].

Open Xcode and start a new project of type i0S Application > Tabbed
Application. On the first tab I placed the status of the smoke alarm and
two web camera views. The second tab can be good for adding and
removing sensors or other devices you might want to monitor.

In the first tab (FirstViewController.m) that is automatically generated by
Xcode, I placed a NSTimer that continously polls the gval.php file and then
updates an UlLabel with the sensor status. The UlLabel will show
"ALARM!” or "OK”, depending of the received value from the gval.php.
The XML data is downloaded by the download method that uses the
NSURLConnection class. A short code snippet that might help:

9of12

By Mikael Johansson,
http://www.linkedin.com/in/mjohansson1
2012-09-08

—-(NSData *)download: (NSString *)server {
/* .. code removed.. */
NSURL *xserverUrl = [[NSURL alloc] initWithString:server];
serverUrlRequest = [NSMutableURLRequest
requestWithURL:serverUrl];

NSData s*rawData = [NSURLConnection
sendSynchronousRequest:serverUrlRequest
returningResponse:&resp error:&err];

if(!rawbData) {

NSLog(@"Check Internet connection.");
return nil;

s

httpUrlResponse = (NSHTTPURLResponse x)resp;
switch ([httpUrlResponse statusCodel) {
case 200:
{
/* .. code removed .. /
return rawData;

}

break;
default:
{

NSLog(@"Unhandled statusCode=%d",
[httpUrlResponse statusCode]);
break;
}

s

return nil;

s

The download method returns NSData* on success or nil on failure. The
NSData* is then (outside the download method) converted to an UTF-8
encoded NSString*.

To get the actual smoke alarm voltage value, I implemented a XML parser
that is compatible with the NSXMLParser class. It takes the UTF-8
NSString and returns the smoke alarm status.

When all your code are in place, just press Command + R to run your app
on either a real iPhone (require to buy developer license) or in the iPhone
simulator.

When I did this I could not resist to also add my IP cameras to the app. I
added two DCS-932L web cameras. If the app says "ALARM!” I can now
also verify that visually in real time.

10 of 12

Carrier =

Camera views

o e
_

By Mikael Johansson,
http://www.linkedin.com/in/mjohansson1

2012-09-08

™

\'\HQ Net Device Controller on iPhone 5.1 Simula
1 Project 4

Net Device Controller FirstViewController.m) [{] -updateMethod <

b

annotations or annotation data. */

nil;

stringWithFormat:@"

tpDownloader = [[HttpContentDownloader alloc] init];
wnload:serverUrlStr];
self getResponseMessageReturnValue:datal;

TextColor: [UIColor redColor]l];
Text:@"ALARM!"];

) {
TextColor: [UIColor greenColor]];
Text:@"0K"];

o) {

. NOTIFY!

another class.

ageReturnValue: (NSData *)data {
nil;

LDevi(e Controller

All Output 5

Return value=1

Return value=1

Return value=1

Figure 4 - The smoke alarm app in an iPhone simulator.

Possible improvements

[[NSString alloc] initWithString:@"http://complexit
gval.php?sid=%d", serverAddress,

inThread: ector(updateMethod) withObject:nil waitUntilDone:YES];

se/arduino/"];
sensorld];

Ckar [Wy | e |

getResponseHessageReturnValue] [201] DEBUG:

2012-09-10 13:32:43.553 Net Device
Controller[59692:f803] -[FirstViewController
getResponseMessageReturnValue:]:[281] DEBUG:

J 2012-09-10 13:32:50.558 Net Device
Controller([59692:f803] -[FirstViewController
getResponseMessageReturnValue:]:[201] DEBUG:

My impression of the smoke alarm detector HG-102 is that it is not so sensitive.
It require, in my opinion, rather much smoke before it starts to alert. If [will
make this again I would choose another smoke alarm detector.

It is also overkill to have an Arduino Mega 2560 rev3 for this purpose. There are
cheaper alternatives like Arduino Uno that is also compatible to the Arduino

Ethernet Shield rev3.

It is also possible to connect additional wires to the smoke alarm in order to
control the buzzer. That can be useful if you want to remote test the smoke
alarm. Or why not joke with the persons in the room...

References

[1] BL59S510 data sheet, URL: http://html.alldatasheet.com/html-
pdf/164341/BELLING/BL59S10/294/1/BL59S10.html

[2] Voltage divider, URL: http://en.wikipedia.org/wiki/Voltage _divider

[3] Getting started w/ Arduino on MacOSX, URL:
http://arduino.cc/en/Guide/MacOSX

[4] Arduino Ethernet library, URL: http://arduino.cc/en/Reference/Ethernet

[5] HiQ, http://www.hiqg.se/

11 0f12

By Mikael Johansson,
http://www.linkedin.com/in/mjohansson1

2012-09-08
[6] Android SDK, http://developer.android.com/sdk

Updated 9/11/12 10:57 AM

12 of 12

